NEW DIRECTIONS IN ARCHAEOLOGY

Editors
Françoise Audouze
Director, Centre de Recherche Archéologiques, Meudon, France
Richard Bradley
Professor of Archaeology, University of Reading
Timothy Earle
Professor of Anthropology, University of California, Los Angeles
Joan Gero
Assistant Professor of Archaeology, University of South Carolina
Ian Hodder
Lecturer in Archaeology, University of Cambridge
Patrick Kirch
Professor of Archaeology, University of California, Berkeley
Colin Renfrew
Disney Professor of Archaeology, University of Cambridge, and Master of Jesus College
Jeremy Sabloff
University Professor of Anthropology and the History and Philosophy of Science, University of Pittsburgh
Andrew Sherratt
Department of Antiquities, Ashmolean Museum, Oxford
Norman Yoffee
Professor of Anthropology, University of Arizona

BAD YEAR ECONOMICS
Chapter 1

Introduction: cultural responses to risk and uncertainty

Paul Halstead and John O'Shea

The world about us is in a constant state of flux. The nomad in the Kalahari Desert and the Western city-dweller in front of his television set are both repeatedly confronted by changes in their natural surroundings and in the behaviour of other members of their own species. In this respect, at least, their experience is no different from that of all other organisms.

Culture endows man with exceptional flexibility in coping with his surroundings and, in consequence, human beings regularly cope with an unusual diversity of natural and social environments. As a result, the normal lifestyle of people in different parts of the world can be radically different. Yet the inherent temporal instability of these environments still poses problems and unusually severe perturbations frequently claim human lives. Shortage of food, one of the most basic and yet least reliable of the requirements for human survival, remains a common cause of loss of life. The means by which human beings secure their food supply in the face of such uncertainty are thus as central to society as the consequences of shortage are drastic and they have far-reaching ramifications throughout cultural behaviour and social life.

Human communities have developed an impressive array of cultural mechanisms for buffering variability. The diversity of these mechanisms, however, should not mask the fact that an effective strategy must match, in both capacity and scale, the variability with which it is to cope. The structure of environmental variability will be discussed more fully below, as will that of the corresponding cultural coping mechanisms. An issue of particular importance, however, is that of predictability. Individual hazards are often quite unpredictable, in terms of their precise timing and so on, and from the perspective of a potential victim this element of uncertainty significantly exacerbates the risk from perturbations. From the more sheltered perspective of the social scientist, however, the basic structure of variability - its frequency, duration, spatial scale, severity and regularity - can often be predicted quite accurately for any given situation. It follows that the basic structure of an effective coping mechanism in the same context can also be specified.

This emphasis on variability and on cultural responses to it has important implications for both synchronic and diachronic studies in the social sciences. Synchronically this approach provides a powerful analytical tool for investigating a range of cultural phenomena attested ethnographically. Bitter controversy surrounds the interpretation of a number of these phenomena, with rival camps favouring 'functionalist' or non-materialist explanations. Both sides proceed in essentially the same, flawed manner, picking a puzzling aspect of human behaviour and then proceeding to explain it on an ad hoc basis in terms of some preferred cultural or environmental factor. The power of the approach presented here is that, since the basic structure of variability (and hence the basic structure of a successful coping mechanism) can be independently specified, the potential of individual cultural forms as buffering mechanisms can be investigated with rigour.

This approach offers similar analytical potential for the syn-
chronic investigation of ancient societies. Again, the basic character-
tistics of the necessary buffering mechanisms can be indepen-
dently predicted and the incomplete historical or archaeological 
record of past cultural practices and institutions can then be 
evaluated in this light. This analytical potential is exploited in the 
following chapters in the investigation of a number of ethnograph-
ically, historically or archaeologically documented societies.

Diachronically this framework has unusual heuristic value 
for the investigation of long-term processes of social and cultural 
change. Variability, particularly that which results in severe and 
unpredictable scarcity of vital resources, exercises a powerful 
selective pressure on human behaviour. Moreover, most of the 
buffering mechanisms deployed by man are cultural, and of these 
the most powerful tend to be social mechanisms. Environmental 
variability is thus a powerful force for long-term social change and 
in this respect the approach adopted here addresses one of the 
most critical areas in the social sciences.

Given the universal prevalence and potentially drastic 
consequences of variability, it is perhaps surprising that social 
scientists have in the past concentrated on the 'normal' or 'average' 
conditions of human existence. In part this simply mirr-
ors a practical problem common to all the social sciences – 
variability is harder to grasp and to present than some measure of 
central tendency. Moreover, different aspects of variability are rel-
vent at different scales of analysis – this issue of analytical scale is 
one to which we must return later. There are also other reasons, 
relevant to individual disciplines within the social sciences. For ex-
ample, ethnographic observations rarely cover a sufficient time 
span to encompass the full range of variability affecting the com-
unity under study. Anthropologists are frequently more interested 
in cultural 'norms' – perceptions of what should happen – than 
in what actually happens. Similarly, some of the early agronomic 
treatises central to ancient economic history are as much prescrip-
tive statements of agricultural theory as descriptive accounts of 
aricultural practice. Finally, archaeologists, faced with the need 
to model past economic systems for which they have no direct 
statistical data, have usually preferred the simplicity of averages to 
the complexity of variability.

In each case the traditional emphasis on norms or averages 
is readily comprehensible in its disciplinary context, but these fig-
ures are an abstraction of the variable reality with which mankind 
must of necessity cope. This variability exercises an important in-
fluence on the ways in which human beings behave and, when it 
extends to vital resources, on their very survival. This volume, 
therefore, takes logical precedence over virtually all others. Pre-

Culture and environment

Human beings do not exist in a vacuum. Rather, their beha-
viour is constrained by their surroundings or environment. Their 
environment has three major components: abiotic (physical-
chemical surroundings), biotic (organisms of other species) and 
social (organisms of the same species). Needless to say, human 
beings mould all three components of their environment to a 
greater or lesser extent, so we are not concerned here with rival de-
terministic claims, but rather with the interaction between man 
and his environment.

From a human perspective, this interaction can usefully be 
construed as a game in which the environment poses problems 
which man must solve. The particular problems posed by the en-
vironment in any individual case are of course a product both of 
local environmental conditions and of the specific nature of 
human behaviour in that context. For example, the specific prob-
lems posed today by the natural environment of southern England 
would be quite different for human beings trying to ensure their 
survival by hunting and gathering, farming or stock-broking.

The boundary between environment and culture is thus dif-
ficult to draw. For the sake of simplicity, however, two conven-
tional distinctions are drawn here. Firstly, the behaviour of 
human beings outside the social unit of analysis will be considered 
an aspect of the environment and the behaviour of those inside the 
unit of analysis will be considered part of culture. From the per-
spective of the individual household, for example, taxation is as 
much a part of the environment as is a bolt of lighting, while 
from the perspective of the state it is an integral component of the 
cultural repertoire. The boundary between environment and cul-
ture depends, therefore, on the scale at which analysis is conduc-
ted. To a great extent this convention also distinguishes between 
circumstances which can be controlled and those which cannot.

Secondly, problems posed by the interaction of culture and en-
vironment are treated as aspects of environment. From the per-
spective of the peasant farmer, the distinction between the en-
vironmental problem of drought and the cultural problem of a 
bad harvest (i.e. of cultural failure to mitigate the effects of 
drought) is largely semantic. Similarly, personal accidents of in-
jury or illness are treated here as environmental problems, regard-
less of the role of human error in their causation.

These conventions perhaps blur some of the traditional 
dichotomies beloved of social scientists, but we are primarily con-
cerned here with the problems faced by human beings in the real 
world, and not with the polarised abstractions of academics. A 
rather different problem is raised by the complexity of the natural 
and social environment and hence by the multiplicity of problems 
which the environment poses, whether practical problems for the 
habitant of the real world or analytical problems for the inmate 
of the ivory tower. A useful analytical tool in this respect, which is 
widely used to reduce complex ecological problems to manageable 
proportions, is the concept of the 'limiting factor': although or-
ganisms must cope with a multiplicity of environmental problems, 
their survival is usually limited in any given context by just one or 
two critical resources.

The limiting factors on human survival obviously vary from 
case to case, depending on the particular environmental and cul-
tural context and on the temporal, spatial and social scale of 
analysis. Certain general observations are, however, possible. Res-
piration is a requirement of human survival which, in terms of its 
immediacy, takes logical precedence over virtually all others. Pre-
Introduction: cultural responses to risk and uncertainty

cisely because of its immediacy, however, this requirement is met by normal biological mechanisms and so rarely sets the limits on survival. At the other extreme, hazards such as dormant volcanoes may operate as limiting factors so rarely that they can be ignored by human populations. Such hazards can be, and regrettably are, ‘coped’ with by the ability of human fertility to compensate for occasional catastrophic mortality. Between these two extremes are other, more critical variables operating on a timescale closer to that of the human lifespan, which can be coped with neither by normal biological mechanisms nor by drastic demographic fluctuations. Culture is particularly well suited to coping with these problems on an intermediate temporal scale. The availability of staple foods is of outstanding, though by no means unique, importance in this respect. Because food is needed very regularly, and yet tends to be both irregular in its availability and unstable once acquired, it has long been a basic limiting factor on human survival. The structure of variability in food supplies is discussed in some detail in the next section.

Variability

In practice, variability may be conceptualised in two differing ways: as the actual pattern of variation in the food supply, or as the operation of those factors, ranging from climate to microorganisms to human judgement, that influence the availability of a particular food resource. Regardless of the focus, the crucial aspect of the analysis is the timing, frequency and severity of shortages.

The influence of variability on human societies can be understood with reference to several key aspects of variability itself. Any source of variability will exhibit three diagnostic characteristics, temporal structure, spatial structure and relative intensity. These characteristics determine the scope and severity of the problem with which a society must contend. Knowledge of these features of the environment also provides the analyst with a powerful tool for predicting the kinds of strategies that would be successful in a given situation.

By temporal structure, we refer both to the timescale over which a given risk operates (i.e. how often it occurs) and to the duration of the resultant scarcity (i.e. how long it lasts). Spatial structure relates to the size of the affected area. A consideration of spatial structure also concerns the relative homogeneity of effect within an area, that is, the degree to which scarcity is evenly (or patchily) spread over the landscape. Hail damage to agricultural fields may occur over a wide area in association with a given storm cell and yet destroy fields within this area seemingly at random, with one field devastated and the next field untouched. Finally, intensity refers to the severity of shortages and to the degree of variation in severity that can occur. A particular cause of crop failure may be consistent or variable in the severity of its effects. Intensity may, therefore, be seen as having both a temporal and a spatial component.

In addition to these characteristics, variability can also be classified in terms of its relative predictability. Sources of variation that are predictable may represent seasonal or annual phenomena, such as the production of vegetal foods in the temperate zone, or they may be cyclical over a variety of longer time scales (see Minc and Smith, this volume). What sets variation of this kind apart from other forms is its certainty. The effects are repeatedly felt at regular intervals. Likewise, the cultural responses to such scarcity can be regular and unambiguous. Indeed, within a given environment, a society’s ability to cope successfully with such regular and predictable kinds of variation may be viewed as the minimum necessary conditions for survival and, as such, integral to normal existence.

Unpredictable variation may result from common factors, such as climate, isolated and sporadic occurrences, such as some forms of pest infestation, or may be cyclical phenomena on a timescale too long to be recognised. The lack of predictability associated with variability of this kind is often more difficult to buffer for the very reason that one never knows when the buffering mechanism will be called into play. So, where buffering mechanisms for times of expected scarcity are direct and unambiguous, the institutions employed to buffer unanticipated shortages may well perform many other functions within the society, particularly in good years. The necessary compromise with the institution’s varied social functions may also sacrifice efficiency in risk buffering. Furthermore, the risk-buffering function of the institution may not be readily apparent either to an outside investigator or to a native.

By evaluating the factors that produce scarcity in terms of these three basic characteristics, therefore, one can obtain a relatively detailed profile of those elements with which a buffering strategy must cope. At the same time, the detailed evaluation of these characteristics may highlight unexpected solutions to problems of scarcity, made possible by exploiting particular aspects of the structure of variability. The nature of such strategies will be addressed in the next section.

Cultural responses to variability

To counteract scarcity, societies employ a wide range of practices which we term collectively ‘buffering mechanisms’. As this term implies, such practices are designed to lessen the impact of variability by dampening its effects. Buffering may be realised through very different kinds of activity, including everything from myth to alternative cultivation practices and from storage to exchange. The usefulness of a given practice depends, of course, on the social and environmental context, including both the structural characteristics of the society at large and the structure of resource failure the society is likely to experience.

Despite the wide range of practices that may operate to lessen the effects of resource variability, such responses can conveniently be grouped into four basic categories: mobility, diversification, physical storage and exchange.

Mobility is the simplest of these responses and works by taking advantage of the spatial and temporal structure of resource failure in effect to move away from scarcity. The common hunter-gatherer system of flexible territorial boundaries and extensive kin networks that permits bands to move great distances in years of drought is a good example. One corollary of this use of mobility is to place a high premium, among both hunter-gatherers and pas-
Diversification is nearly as simple as mobility and includes a broad range of passive to active practices. The underlying principle of diversification is that broadening the base of the subsistence system, either by exploiting a wider range of plant and animal species or by exploiting broader and more varied areas, reduces the risk of catastrophic shortages—in effect it avoids placing all the eggs in one basket. At the passive end of the spectrum is the designation of reserved or emergency foods, that is, foods that under ordinary circumstances are not or cannot be eaten, but which are consumed in the face of extreme hunger. This represents almost a passive form of banking or savings. At the more active end of the spectrum is the use by farmers of dispersed fields (see Forbes, this volume), which are employed to lessen the risk of total loss due to micro-climatic factors, pests and the like, even at the expense of less efficient cultivation.

By the term 'physical storage', we refer to that range of activities that is directed toward stabilising available food so that it may be consumed at some later time. This is principally a means of dealing with the temporal structure of food availability. Although storage is of critical concern to agricultural societies, it may also play an important stabilising role in non-agricultural economies (see Rowley-Conwy and Zvelebil, this volume).

The final category of buffering strategy is exchange. The concepts of sharing and of reciprocity are virtually universal as social values and have been suggested by some investigators to be at the very core of the origins of human culture. As a device for buffering scarcity, exchange functions in a fashion similar to storage, in that present abundance is converted, this time via social transactions, into a future obligation in time of need. If I help my neighbour out of a lean season this year, I have the right to expect the aid to be reciprocated when the situation is reversed. The capacity of such relations, and indeed the certainty of reciprocation, can vary widely depending on the scale of the social units involved and the character of the exchange networks. So, for example, in small-scale societies, food may be given freely in time of need with little formal recognition of the anticipated reciprocity. While serious or generalised resource failure may require mobilisation of the entire population and progressively more drastic counter-measures. In the light of this difference in the scale of response, a distinction may be drawn between low-level and high-level mechanisms. Low-level mechanisms are the most efficient and the most reliable, but are of strictly limited scope. High-level mechanisms are more powerful, in terms of the scale of shortage which they can buffer. By virtue of their size and the relative rarity with which they may be activated, however, they can be both costly, in the energy invested in their maintenance, and unreliable, in that they may depend on distant social relations, may entail reversal of cultural norms and, more generally, may fail through long periods of disuse. In a way, the fate of high-level coping mechanisms is shaped as much by the frequency and regularity with which they are not used as by that with which they are activated. In the long term, therefore, there is strong selective pressure for communities to embed these 'emergency' mechanisms as regular aspects of the cultural repertoire (see Garnsey and Morris, this volume). For example, surpluses may be earmarked for feasting at a particular annual ceremony, thus ensuring their continued production through a long run of good years. Whilst this embedding may reinforce the survival of a cultural form used only rarely as a coping mechanism, it may also undermine this latent function if the surplus cannot be redirected in time of need. In this way, high-level mechanisms may be embedded to the point where they are irreversibly transformed, with radical consequences for the articulation and survival of that society (see Jongman and Dekker, this volume).

Predicting uncertainty

In any society, therefore, we can expect an essential balance between those factors that produce scarcity and the mechanisms that are employed to ameliorate these effects. Yet, for any given environmental setting, there are numerous alternative strategies that could successfully be pursued. The particular strategy that is likely to be employed is strongly influenced and constrained by several features of the society in question, including the size and density of the local (and regional) population, the intensity of subsistence exploitation and the level of technological sophistication.
Introduction: cultural response to risk and uncertainty

The nature of resource variability and of its potential fit with cultural buffering mechanisms can be illustrated by reference to maize yields from southeastern Iowa (USA) during the years 1925 to 1945. Figure 1.1a plots yields in terms of bushels per acre for the two most dissimilar townships within Van Buren county (a township is a square region, six miles [9.7 km] to a side, while Van Buren county covers an area of roughly 500 square miles). Figure 1.1b plots yields over the same period of time but for the two most dissimilar counties within southeastern Iowa.

Maize yields in the region are characterised by relatively high temporal variability (i.e. considerable variation from year to year) and at the same time by a very low level of spatial variability (i.e. little variation from place to place). Given such a pattern of variability, the most likely mechanisms for accommodating years of bad harvest would be local storage of grain in good years and diversification, either in the crops grown or through the exploitation of non-agricultural food sources, such as livestock. In the absence of a sophisticated transportation network, however, the lack of spatial variability over very large areas would seem to rule out exchange as an important buffering strategy.

Although this example highlights the relationship between the structure of variability and the selection of effective countermeasures, it can also be used to illustrate how cultural variables, such as population density and subsistence technology, exert a strong influence on the definition of the effective environment. Modern-day farming in the region is extensive and largely rainfed, meaning that summer precipitation is a crucial factor affecting crop yield over the entire area. Yet, when the same basic crop, maize, was cultivated by native Americans in the region, using small, optimally located and widely separated fields, the factors producing variation in yield were dramatically different. Although the fields were still subject to the same precipitation regime, smaller-scale effects, such as soil type, micro-climate, insects, fire and hail increased in importance as factors producing significant variability. As a result, spatial variability was probably greater than that represented for modern farmers, and may have been sufficient to make some level of exchange a useful option.

Risk buffering and social change

The importance of variability and buffering lies not only in the immediate realm of provisioning and economic activities, but extends beyond these to exert a strong influence on culture at large, shaping societal organisation and providing the crucial conditions that give rise to social change and transformation. It is these wider ramifications that make the investigation of variability and buffering so significant.

Although human beings are biologically and culturally adapted to a wide range of environments, the hallmark of culture is its flexibility and the strength of human culture is most fully realised in coping with recurrent but unpredictable deviations from normality. Yet, within any society, the delicate balance between variability and cultural response is matched by a similar balancing between increased security, represented by progressively more drastic and expensive buffering mechanisms, and increased efficiency, allowing only for common eventualities.

The most powerful mechanisms, and the most costly, are those that cope with problems of unusual severity or exceptional scale. Although prone to falling into disuse because of the infrequency with which they are activated, these high-level coping mechanisms may serve a critical function in cases of extreme shortage. As a result there is strong selective pressure for them to become increasingly embedded within more regular cultural practices and so, potentially, to develop widespread ramifications throughout the social system. In this way, the critical energy or information required for the operation of the buffering mechanism is maintained, but often at the cost of considerably reduced ef-
ficiency. At the same time, this process may serve to promote the social institution(s) within which the coping mechanism is embedded. It thereby creates in these multi-layered social institutions both the potential and the means for social change.

One likely outcome of this process is the radical transformation of society, as perhaps in the appropriation of risk-related surplus for the maintenance of an elite. In this case associated changes in other aspects of social or economic behaviour are likely to unleash new sources of risk, leading either to the development of new coping mechanisms, and potentially to the start of another cycle of cultural change, or to the undermining of existing coping mechanisms, resulting in catastrophic rather than transformational change. Either way, high-level coping mechanisms are an unstable element at the core of human culture, which can trigger a chain reaction of changes throughout society.

Prospect

The conclusion of the previous discussions has been that cultural mechanisms for coping with scarcity play a central role in the maintenance and transformation of human societies. This approach also has rather broader implications, which may be considered at three levels – empirical, heuristic and theoretical.

At an empirical level, recognition of the importance of variability may help to resolve some apparent contradictions in ethnographic or historical records. Such records are usually assumed to represent normal or average conditions and contradictory information is thus explained in terms of differing local circumstances or in terms of the unreliability of certain sources. In fact many ethnographic and historical reports are based on too few observations to make a reliable estimate of average conditions and so these ‘contradictions’ may be accurate reflections of actual variability, rather than inaccurate estimates of a hypothetical norm.

Of course the quality and quantity of information needed to document variability directly is far greater than that required to produce a simple average figure and such data are often unavailable. The basic structure of variability in a particular situation, however, may often be extrapolated from better-documented cases – indeed, the structure of variability can often be established even in cases where the average is unknown. For example, the relative structure of variability in the ancient crop yields from a particular area may be established by extrapolation from modern data for the same area without estimating any absolute mean value. This point is of particular importance for prehistorians, who rarely have direct evidence for such variables as average crop yields and, as has already been argued, the structure of variability may be more significant than average conditions for understanding human society.

At a heuristic level, an emphasis on variability is of considerable value in the analysis of cultural practices and institutions. Environmental variability is a fact of life and extreme variability may threaten life. The consequences of variability must be evaded or buffered and man employs a wide array of cultural mechanisms to this end. It must be stressed that not all cultural behaviour serves to buffer risk, nor can any individual cultural form be understood solely in such terms. Nonetheless, some practices and institutions serve, literally, a vital role in mitigating the effects of variability and some of these buffering mechanisms occupy a central position in human behaviour and in the articulation of human communities. In this volume, a wide range of cultural practices and institutions is examined from this perspective, ultimately with a view to evaluating the heuristic value of this approach for understanding social change.

This approach may also be useful at a more theoretical level. Although the study of economy–of how societies satisfy their (material) wants–has long been a central concern of social science, this area of enquiry is the subject of considerable controversy. Economic and social determinists dispute the importance of this concern to the study of human society; environmental and cultural determinists dispute the definition of wants; and substantivists and formalists dispute the means by which these wants are satisfied. No polar stance is required. The environment is understood to include both a natural and a social component. Moreover, the environmental problems facing man are specific to particular cultural contexts and as such are the product of both (external) environmental and (internal) cultural factors. Finally, the indisputable anthropological observation that economic activity is normally socially embedded in no way invalidates the basic tenet of economics that this activity is frequently concerned with the allocation of resources which are scarce, and in some cases fatally scarce. On the contrary, human communities use a variety of cultural mechanisms to cope with risks such as the extreme scarcity of resources, and the most powerful of these mechanisms entail the mobilisation of social relationships. Viewed from this perspective, these traditional polarisations are as obstructive to the study of man as they are non-sensical.

Organisation of this volume

The contributions in this volume examine the problems of variability and risk buffering over a wide range of scales and in strikingly different cultural and historical contexts. The diversity is intentional and is designed to emphasise both the wide applicability of the approach adopted here and the wealth of different ways in which human communities cope with environmental variability.

The papers that follow are ordered along a continuum of increasing organisational complexity, starting with simple hunter-gatherers and ending with modern states. This organisation was selected for two basic reasons. First, buffering strategies tend to be additive, that is, as societies become larger and more complex, new higher-order mechanisms are added or superimposed onto more basic practices. The present organisation of chapters therefore allows the more fundamental kinds of mechanisms to be examined first, in the contexts of hunter-gatherers or simple farmers, and then for a variety of higher-order mechanisms to be examined which operate concurrently in more complex societies. The second value of the present organisation is the emphasis it places on the increasing scale and costs of buffering strategies as the focus shifts from simpler to more complex social forms.

It should be stressed that these contributions are all case
studies, in which the authors have selected a particular aspect of variability and risk buffering on which to concentrate. No author has attempted to analyse all potential sources of risk or all the possible cultural practices that might play some role in risk buffering. This process of selection, exemplified in the individual chapters, highlights the value of the approach as an analytical tool, enabling the investigator to use risk buffering at a given scale as a means to focus on particular kinds of social institutions or practices for either synchronic or diachronic study. Equally, it stresses the practical necessity of clearly defining the nature and scale of the problem, given the nested and all-pervasive character of both risk and risk-buffering activities.